
CME292: Advanced MATLAB for Scientific Computing

Homework #4
Symbolic, Compiled, and Parallel MATLAB & ODEs/PDES

Due: Thursday, October 23, 2014

Instructions
For this problem set, 2 problems out of 4 are required. You are free to choose the 2 problems you complete.

Before completing problem set, please see HomeworkInstructions on Coursework for general homework
instructions, grading policy, and number of required problems per problem set.

Problem 1
The unsteady, two-dimensional Euler equations are

BU

Bt
`
BF

Bx
pUq `

BG

Bx
pUq “ 0, (1)

where U “

»

—

—

–

ρ

ρu

ρv

e

fi

ffi

ffi

fl

, V “

»

—

—

–

ρ

u

v

p

fi

ffi

ffi

fl

F “

»

—

—

–

ρu

ρu2 ` p

ρuv

pe` pqu

fi

ffi

ffi

fl

, G “

»

—

—

–

ρv

ρvu

ρv2 ` p

pe` pqv

fi

ffi

ffi

fl

, p “ pγ ´ 1q
´

e´ ρu
2
`v2

2

¯

, and γ is a

constant. The vector U is known as the conservative form of the flow variables and V is the primitive form.
Re-write the conservation form of the Euler equations in (1) in wave speed form as

BV

Bt
`A

BV

Bx
`B

BV

Bx
“ 0. (2)

where

A “

„

BU

BV

´1
BF

BV
B “

„

BU

BV

´1
BG

BV
.

The symbolic eigenvalue decomposition of A and B plays an important role in the construction of some CFD
schemes. Use MATLAB’s symbolic tool box to perform the following tasks:

(1) Compute A and B symbolically. The expression for A and B should only involve the terms of ρ, u, v, p, γ

(2) Use the expression γp “ ρc2 to eliminate p and γ from these expressions for A and B.

(3) Finally, compute the eigenvalue decomposition of A and B symbolically.

Problem 2
In this problem, you will spatially discretize a Partial Differential Equation (PDE) using the Finite Difference
Method (FDM) to yield a coupled system of Ordinary Differential Equations (ODEs). The resulting ODEs
will be integrated using ode45 and ode23s. Here we consider the viscous Burger’s equation

1

CME292 Homework #4 (Symbolic, Compiled, and Parallel MATLAB & ODEs/PDES)

x0 “ 0 xi´1 xi xi`1 xN “ 1 x

upx, tq

Ui´1ptnq

Uiptnq

Ui`1ptnq

Figure 1: Discretized domain and solution for (3)

Bu

Bt
`
B
`

1
2u

2
˘

Bx
“ ε

B2u

Bx2
(3)

for x P r0, 1s and t P r0, 0.5s, with the initial condition upx, 0q “ 1 and boundary condition up0, tq “ 5. Using
the Method of Lines, (3) is spatially discretized on the grid shown in Figure 1 using FDM to obtain a system
of ODEs of the form

BU

Bt
“ FpUptq, tq, (4)

where Uiptq “ upxi, tq for i “ 1, . . . , N . As the value of u is known as x0 from the boundary condition, the
solution at x0 is not included in the state vector.
For stability considerations, we apply upwinding to the advection term, namely

B
`

1
2u

2
˘

Bx
pxi, tq «

1
2upxi, tq

2 ´ 1
2upxi´1, tq

2

∆x
i “ 1, . . . , N (5)

where ∆xi “ xi ´ xi´1 “ ∆x as the grid is assumed uniform. The standard second order approximation to
the diffusive term is applied

B2u

Bx2
pxi, tq «

upxi`1, tq ´ 2upxi, tq ` upxi´1, tq

∆x2
i “ 1, . . . , N ´ 1. (6)

At the last equation, a first-order, leftward bias of the second order derivative is applied

B2u

Bx2
pxi, tq «

upxN , tq ´ 2upxN´1, tq ` upxN´2, tq

∆x2
. (7)

The boundary condition is applied as
upx0, tq “ up0, tq (8)

in (5) and (7). Combining (5)-(8) into the form of (4), we have

FpUptq, tqi “

$

’

’

&

’

’

%

ε
∆x2 pU2ptq ´ 2U1ptq ` up0, tqq ´

1
2∆x

`

U1ptq
2 ´ up0, tq2

˘

for i “ 1
ε

∆x2 pUi`1ptq ´ 2Uiptq `Ui´1ptqq ´
1

2∆x

`

Uiptq
2 ´Ui´1ptq

2
˘

for i “ 2, . . . , N ´ 1
ε

∆x2 pUN ptq ´ 2UN´1ptq `UN´2ptqq ´
1

2∆x

`

Uiptq
2 ´Ui´1ptq

2
˘

for i “ N.

(9)

Problem 2 continued on next page. . . Page 2 of 7

CME292 Homework #4 (Symbolic, Compiled, and Parallel MATLAB & ODEs/PDES)

(1) Implement the above finite difference method for semi-discretizing (3)

• This involves creating a function that accepts t and U as an inputs (in that order) and returning
FpUq as an output. There can be additional input arguments if desired. The input/output structure
is for compatibility with MATLAB’s ODE solvers (required for next part).

(2) Solve the resulting system of ODEs using (4) using ode45 and ode23s for ε “ r0, 0.001, 0.01, 0.1, 1, 2, 5, 10s.
I recommend using N “ 101 (101 grid points, 100 degrees of freedom), but this is not required. Make
note of the number of steps required to complete the time integration, as well as the CPU time. Comment
on any trends.

(3) For ε “ r0, 0.1, 1, 10s make an animation of the time steps. Include no more than 200 frames in each
animation, regardless of time steps required for timestepping. Decide whether to use ode45 or ode23s
from your experience in the previous part. Save the animation to a movie file.

(4) (extra credit) Repeat (2) using MATLAB’s parfor (the different simulations are independent). Don’t
worry about CPU timings for each value of ε, just report the CPU time to complete ALL simulations.
How many CPUs did you use? How does the CPU time for all simulations compare between the serial
and parallel versions?

Problem 3
This this problem you will use MATLAB’s MEX capabilities to speed up a 2D unstructured finite element
code for solving unsteady heat flow provided for you in heat_fem (on course website). You will both write
your own MEX-file and use MATLAB’s Coder speedup the heat flow analysis. Similar to the nonlinear truss
problem, no knowledge of heat flow is required. A very brief exposition is given next.
The heat flow equation is

BT

Bt
´∇ ¨ pκ ¨∇T q “ F px, tq for x P Ω, t P r0, T s (10)

with Dirichlet boundary conditions of the form T px, tq “ T̄ ptq for x P ΓT and Neumann boundary conditions
pκ ¨∇T q ¨n “ 0 for x P Γq, where ΓT YΓq “ BΩ. The PDE in (10) is also equipped with an initial condition
T px, 0q “ T0pxq.
Spatial discretization of (10) using the finite element method yields the linear system of ordinary differential
equations

M
BT

Bt
`KT “ F (11)

where M is the “mass” matrix, K is the “stiffness” matrix, F is the forcing term, and T is the vector of nodal
temperatures. The terms mass and stiffness have been adopted from the structural mechanics community
and used in this context. Equation (11) is discretized in time using the backward Euler method to yield

M

ˆ

Tn`1 ´Tn

∆t

˙

`KTn`1 “ Fn`1. (12)

If the solution is known at time tn, the solution at time tn`1 is obtained by solving (12)

Tn`1 “ pM`∆tKq
´1 `

∆tFn`1 `MTn
˘

. (13)

This is used to march in time from the initial condition to some final time. In this problem, we consider the
a rectangular plate with a circular hole cut out of the center as depicted in Figure 2a. The initial condition
is a uniform temperature of 0 throughout the domain. The boundary conditions are T “ 5 on the left edge

Problem 3 continued on next page. . . Page 3 of 7

CME292 Homework #4 (Symbolic, Compiled, and Parallel MATLAB & ODEs/PDES)

(a) Plate with hole mesh (b) Heat distribution at final time

Figure 2: Problem 3 - Heat Flow

of the plate and pκ ¨∇T q ¨ n “ 0 (insulated) on all other boundaries (including the hole). The time interval
considered is r0, 1s. The solution of heat equation at time T “ 1 is shown in Figure 2b.
See the comments of the code in heat_fem for any additional information. In this problem, your tasks are
to:

(1) Write and compile your own MEX-file to build

• build_matrices.m

– This function is pretty fast in MATLAB so you won’t see significant speedup.
– I recommend naming the source MEX-file build_matrices_mex.c to avoid naming conflict

with M-file.

(2) Use MATLAB’s Coder to generate MEX-files for

• create_sparsity_structure.m

• get_temp_fem.m

• I recommend naming the projects create_sparsity_structure_mex.prj and get_temp_fem_mex.prj,
respectively, to avoid naming conflicts with M-files.

Recall from lecture that the bulk of the work required for using the Coder lies in defining the inputs for
each function. The comments in get_temp_fem.m and create_sparsity_structure.m should prove
helpful, as well as the code in setup_problem.m.

(3) Run run_heatflow.m to solve heat flow problem using MATLAB. Make note of execution time of each
portion of the code.

(4) Copy run_heatflow.m to run_heatflow_mex.m and modify it such that it runs the compiled version
of the heat flow code. How does the execution time of each component of the program compare?

Page 4 of 7

CME292 Homework #4 (Symbolic, Compiled, and Parallel MATLAB & ODEs/PDES)

Problem 4
In this problem, you will gain experience with MATLAB’s parfor functionality to construct a Pareto front
in the context of multiobjective optimization by solving multiple (independent) optimization problems in
parallel. In the context of competing objectives, a Pareto front is defined as a set of states such that it
is impossible to improve one objective without worsening the other. This problem will use the nonlinear
2D truss code from Homework 2. Prior knowledge of truss analysis or mechanics is not necessary. A brief
exposition of the truss analysis framework is provided below (repeated from Homework 2).
First, we begin with some terminology and nomenclature. A truss structure will be composed of nv nodes
or vertices connected by nel truss elements. Each element e has an initial length Le, cross-sectional area Ae,
elastic modulus Ee, density ρe, and deformed length (i.e. after loads applied) `e. A truss element can only
carry normal forces, not shear or moments. This means the direction of the force within an element must
align with the element. By definition, the intersection of two truss elements will be a pinned connection
(otherwise the members would carry shear/moments). The force carried by element e will be denoted Ne.
Each vertex will be subject to forces that are applied externally or transferred from the truss elements. Let
f int
i P R2 denote the force on vertex i due to the truss elements, usually called the internal force. Also, let
f ext
i P R2 denote the force on vertex i due to external loads. Finally, ui P R2 denotes the displacement of
vertex i induced by the loads.
Boundary conditions for truss elements can either be displacement or force boundary conditions. Force
boundary conditions correspond to external loads, while displacement boundary conditions indicate pre-
scribed displacements. Every node must have exactly one boundary condition for each degree of freedom
(i.e. the x´ and y´directions).
Static equilibrium at the nodes leads to the governing equation

f intpuq “ f ext. (14)

There are several important quantities that will be used in this assignment as objective or constraints.

• Stress
σe “ Ee

`e
Le

(15)

• Weight

W “

nel
ÿ

e“1

ρeAe`e (16)

• Compliance

C “
nv
ÿ

i“1

fTi ui (17)

In the truss program you are given, there will be three relevant data structures.

• msh - contains all mesh information

• bcs - contains all boundary condition information

• mat - contains all material information (including area)

Given a new vector of elemental areas, you can obtain the solution of the truss problem as follows

% Toy mesh
mesh = 'mesh1';

% Determine number of elements in mesh and define vector of areas

Problem 4 continued on next page. . . Page 5 of 7

CME292 Homework #4 (Symbolic, Compiled, and Parallel MATLAB & ODEs/PDES)

nel = eval([mesh,'()']);
A = ones(nel,1);

% Setup mesh, BCs, and materials
[msh,bcs,mat] = setup_problem(A,mesh);

% Solve nonlinear truss equations (and sensitivity equations)
[U,dUdA,F,dFdA] = solve_truss(msh,mat,bcs);

% Plot mesh and deformation
% Vary last argument to scale deformation
visualize_truss_loads(msh,bcs,mat,U,10);

% Compute deformed lengths and sensitivities
[l,dldA] = compute_element_lengths(U,dUdA,msh)

% Compute weight and sensitivities
[W,dWdA] = compute_weight(U,dUdA,msh,mat);

% Compute compliance and sensitivities
[C,dCdA] = compute_compliance(U,dUdA,F,dFdA);

% Compute element force and sensitivities
[N,dNdA] = compute_internal_force(U,dUdA,msh,mat);

% Compute stress and sensitivities
[s,dsdA] = compute_stress(U,dUdA,msh,mat);

(1) Construct a Pareto front to quantify the tradeoff between weight and compliance minimization for the
mesh in Figure 3 (mesh = 'mesh1'). This can be done by solving the minimization problem

minimize
APRnel

W pAq ` θCpAq

subject to |σepAq| ď σfail

0.01 ď A ď 1,

(18)

for θ P r0, 1s (the bounds on θ are usually determined by trial and error, which was done for you). For
each optimization problem, use an initial guess of A “ 0.1.

• Use fmincon with an interior point algorithm and user-defined gradients

• Generate the Pareto front by solving (18) for 50 values of θ in r0, 1s and plotting W pA˚pθqq vs
CpA˚pθqq

(2) As all optimization problems are independent, solve in parallel using parfor

• Use 1, 2, 4, 8 processes and record time for each (do not time plot generation)

– Do this portion of the problem on corn.stanford.edu to ensure Parallel Computing toolbox
available and sufficient number of processors to solve problem

• Comment briefly on speedup obtained by using multiple processors

(3) If you are feeling ambitious, try to repeat the previous study using mesh2

• I recommend considering only 4 and 8 processors

Page 6 of 7

CME292 Homework #4 (Symbolic, Compiled, and Parallel MATLAB & ODEs/PDES)

(a) Mesh

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

1

2

3

4

5

6

7
x 10

6

W (A ∗)

C
(A

∗
)

Pare to Front f or We ight-C omp l ianc e M in im iz ation

(b) Pareto Front (Weight/Compliance)

Figure 3: Simple Truss (mesh1)

Page 7 of 7

	Instructions
	Problem 1
	Problem 2
	Problem 3
	Problem 4

